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Abstract. The apolipoprotein E �4 (APOE �4) allele is a well-established genetic risk factor for Alzheimer’s disease (AD).
Numerous studies have suggested that the modulation of APOE �4 affects cognition and brain structure and function in healthy
populations, particularly in the hippocampus, a key area associated with AD pathology. However, the effect of APOE �4 allele
on cognitive performance, hippocampal structural morphology, and specifically on functional characteristics in patients with
AD remains poorly understood. Here, we employed a neuropsychological battery test and multi-modal structural MRI and
resting-state functional MRI dataset to systematically investigate cognitive performance, hippocampal structural volume, and
functional properties (including local low-frequency oscillating amplitude, intra-regional functional synchrony, and inter-regional
functional connectivity) in 16 APOE �4-carriers and 26 non-carriers at early stages of AD. Compared to non-carriers, APOE
�4-carriers exhibited poorer performance on recognition performance, but performed better on the late item generation of the
verbal fluency task (associated with executive function). Structural imaging analysis revealed that APOE �4-carriers exhibited
smaller left hippocampal volumes compared to non-carriers, and the result remains significant after correcting for effects
of brain size. Functional imaging analysis revealed that APOE �4-carriers exhibited decreased amplitude of low-frequency
fluctuations in the left hippocampus, non-significant changes in intra-regional synchronization within the hippocampus and
decreased hippocampal functional connectivity predominantly in components of the default-mode network including the medial
frontal and parietal cortices and the lateral temporal cortical regions. Taken together, our results showed APOE genotypic effects
on the cognitive profile and hippocampal structural and functional characteristics in patients at early stages of AD, thus providing
empirical evidence for the modulation of the APOE genotype on disease phenotype.
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INTRODUCTION

The apolipoprotein E �4 (APOE �4) allele is a well-
established genetic risk factor for the development of
Alzheimer’s disease (AD) [1, 2]. The presence of a
single �4 allele increases the lifetime risk of AD by
2-3-fold relative to the �3 allele, and two �4 alleles
increase the lifetime risk of AD by 12-fold [3].

Neuropsychological studies have reported that
the APOE genotype is associated with cognitive
performance in different domains in AD patients.
Specifically, memory is more impaired in APOE �4-
carriers [4–10], while executive function, naming, and
mental speed are more impaired in APOE �4 non-
carriers [4, 6, 9–11]. However, several groups did not
find significant differences in cognitive performance
between AD patients with and without the APOE
�4 allele [12]. Furthermore, structural imaging stud-
ies in AD revealed atrophy of medial temporal lobe
(the earliest site of AD pathology), specifically in
the hippocampus [13, 14]. Several studies have also
reported more rapid hippocampal atrophy in APOE
�4-carriers compared with non-carriers in AD patients
[15–18]; however, other studies did not find signifi-
cant differences in hippocampal atrophy [19, 20]. Thus,
modulation of APOE genetic variants on both cognitive
performance and hippocampal volume in AD remains
controversial.

In addition to hippocampal structural abnormalities,
increasing evidence also suggests AD-related disrup-
tion in hippocampal functional characteristics, e.g.,
local neural fluctuations [21], intra-regional synchrony
[22, 23], and inter-regional connectivity [24–26].
These functional features can be well-characterized by
resting-state functional MRI (R-fMRI), a promising
non-invasive and easy applicable imaging technique
used to examine the brain’s intrinsic or sponta-
neous activity [27, 28]. Previously, Biswal et al.
[27] demonstrated that the spontaneous low frequency
(0.01–0.1 Hz) fluctuations (LFFs) are physiologically
meaningful. A previous study suggested that the LFFs
of R-fMRI have the underlying electrophysiological
mechanism as the task-induced fMRI BOLD signal
[29]. Thus, the amplitude of LFF (ALFF) may indi-
cate the amplitude of regional spontaneous neuronal
activity [27]. Moreover, a number of R-fMRI studies
have utilized the ALFF metric to study functional alter-
ations in the hippocampus in patients with AD and/or
mild cognitive impairment [21, 26, 30–34]. Cross-
correlation coefficient of spontaneous low-frequency
(COSLOF) is an index that measures mean connec-
tivity within a brain region. Technically speaking, the

COSLOF is similar to regional homogeneity [35], a
widely used measurement to study local synchroniza-
tion of brain activity among spatially adjacent voxels.
Li et al. [22] were the first to employ the COSLOF
index to measure functional integrity within the hip-
pocampus and demonstrated that COSLOF within the
hippocampus could be used as a quantitative marker
in diagnosing AD. Recently, several R-fMRI studies
have demonstrated modulation of the APOE genotype
on hippocampal resting-state functional connectiv-
ity (RSFC) in healthy adults [36–39]. However, no
R-fMRI studies have reported whether the APOE geno-
type modulates the intrinsic functional architecture of
the hippocampus in AD.

This study aimed to systematically determine the
APOE genotype effects on cognitive performance and
hippocampal structure and functioning in AD. Thus,
we collected psychometric, structural MRI, and R-
fMRI data from 16 AD patients with at least one APOE
�4 allele and 26 age-, gender-, education-, and severity-
matched AD patients without the APOE �4 allele.
On the basis of these studies, we hypothesized that
the APOE genotype modulates the clinical phenotype
of AD including memory performance, hippocampal
volume, and hippocampal functional characteristics
(including local and connectivity features).

MATERIALS AND METHODS

Participants

Patients with AD were prospectively recruited to
establish a case registry at the Dementia Care and
Research Center, Peking University Institute of Mental
Health. Upon enrollment, a detailed clinical exam-
ination, neuropsychological battery test, laboratory
tests, and multi-modal brain MRI examinations were
performed on every participant. Participants in the
registry were also invited to receive follow-up exami-
nations every 6 months. For the purpose of the present
study, we selected participants (registered between
June 2007 through September 2009) who had a base-
line diagnosis of AD and had completed an MRI
examination before initiation of nootropic medication
(n = 74). These patients were all Chinese Han and
right-handed. At baseline, the patients had a clinical
dementia rating (CDR) global score of 0.5, 1, or 2 [40].
A clinical diagnosis of AD was made according to the
criteria for dementia cited in the International Clas-
sification of Diseases, 10th Revision (ICD-10) [41]
and the criteria for probable AD of the National Insti-
tute of Neurological and Communicative Disorders
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and the Stroke/Alzheimer Disease and Related
Disorders Association (NINCDS-ADRDA) [42]. Par-
ticipants were excluded if they presented structural
abnormalities that could result in dementia, such as
cortical infarction, tumor, or subdural hematoma, or
they had concurrent illness other than dementia that
interfered with cognitive function at the time of the
MRI examination. The selected AD patients were fur-
ther screened for the APOE genotype and classified as
either APOE �4 positive/carriers (genotype of �3/�4
or �4/�4) or APOE �4 negative/non-carriers (genotype
of �3/�3). Subjects carrying the APOE �2 allele were
excluded due to its potential protective effect based
on epidemiological surveys [43]. After a final visual
inspection of the MR images, a total of 42 subjects
from the initial 74 AD patients were selected for the
current study, including 16 APOE �4-carriers (13 �3/�4
and 3 �4/�4) and 26 non-carriers. Of the 42 very mild

to moderate AD patients, 23 patients had a CDR global
score of 0.5, 15 patients had a CDR global score of 1,
and 4 patients had a CDR global score of 2. There were
no differences in the distribution of CDR global scores
between the groups (p = 0.831). Informed consent was
obtained from each participant and this study proto-
col was approved by the institutional review board
of Peking University Institute of Mental Health. Fur-
ther detailed clinical and demographic data of all AD
patients are presented in Table 1.

APOE genotyping

DNA was isolated from 10 ml EDTA with blood
QIAamp® DNA Blood Mini Kit (Qiagen Inc., Hilden,
Germany) according to standard procedures. APOE
genotyping was performed as previously described
[44]. Genotype scorers (XW and HL) were blind to

Table 1
Demographics, clinical, and cognitive characteristics of the participants

APOE �4-carriers (n = 16) APOE �4 non-carriers (n = 26) p-value

Age (years) 79.3 (5.1) 76.5 (5. 3) 0.104
Gender (M/F) 4/12 9/17 0.513
Education (years) 13.6 (2.8) 13.1 (4.2) 0.711
Illness duration (years)a 3.5 (1.8) 2.3 (1.7) 0.065
CDR-SB 5.1 (2. 5) 4.3 (2.0) 0.252
CASI 76.9 (11.0) 79.9 (7.5) 0.187
COMT

immediate object memory – trial 1b 3.6 (1.2) 4.2 (1.5) 0.827
immediate object memory – trial 2b 5 (1.3) 5.4 (1. 9) 0.918
immediate object memory – trial 3b 4.9 (1.2) 6.0 (1.8) 0.090
immediate object memory – mean 4.7 (1.1) 5.2 (1.6) 0.210
free delayed recall – 5 minb 2.0 (1.8) 3.3 (2.6) 0.108
recognition – 5 minb 15.9 (2.2) 18.3 (1.8) 0.001∗∗
free delayed recall – 30 minb 1.6 (1.8) 3.1 (3.0) 0.129
recognition – 30 minb 16.0 (3.4) 18.7 (1.5) 0.012∗

Body part naming 10.0 (0) 10.0 (0) 0.999
Auditory comprehensionb 22.9 (2.1) 23.8 (1.0) 0.288
Read time 4.8 (1.6) 5.0 (1.4) 0.502
Set time 5.4 (2.7) 5.4 (2.41) 0.814

Verbal fluencyb 12.9 (2.9) 11.5 (2.7) 0.096
verbal fluency (0–15 s)b 5.8 (2.7) 7.5 (2.6) 0.051
verbal fluency (16–30 s)b 3.5 (2.8) 2.7 (1.9) 0.255
verbal fluency (31–45 s)b 1.7 (1.3) 1.6 (1.9) 0.894
verbal fluency (46–60 s)b 1.7 (0.8) 0.8 (0.9) 0.002∗∗

Picture completionb 6 (2.4) 5.6 (2.3) 0.269
Digit spanb 14 (4.8) 13.6 (3.3) 0.701

digit span – forwardb 8.6 (2.4) 8.2 (2.1) 0.629
digit span – backwardb 5.4 (2.8) 5.8 (3.0) 0.767

CERAD drawing 9.4 (2.0) 9.7 (1.8) 0.162
Trail-Making Test A – time (s)b 139.2 (80.5) 97.5 (48.1) 0.091
Trail-Making Test A– errorsb 1.0 (1.6) 0.5 (0.9) 0.297

Data were presented as the mean (SD). P-values were obtained using the two-tailed Chi-square test for gender and
two-tailed two-sample t-tests for other factors. ∗p < 0.05; ∗∗p < 0.01. aData were missing for eight patients; bData
were missing for three patients. CDR-SB, Clinical Dementia Rating, sum of box; CASI, cognitive ability screening
instrument; COMT, common object memory test; CERAD, Consortium to Establish a Registry for Alzheimer’s
Disease.
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the identity of the samples. Eighteen samples were
further evaluated using this sequencing technique, and
the results were consistent with the APOE genotyp-
ing results obtained using the PCR-RFLP method, thus
verifying our approach.

Neuropsychological assessment

Considering that the Mini-Mental State Exam-
ination (MMSE) can be affected by different
linguistic, educational, cultural, and socioeconomic
backgrounds, this measure was only used as a screen-
ing tool to evaluate the patients’ suitability for
inclusion/exclusion in the present study. The AD
patients in this study had MMSE scores of >16.
The overall cognitive functioning was evaluated using
the Cognitive Abilities Screening Instrument, Chi-
nese version 2.0 (CASI C-2.0) [45, 46]. All subjects
were administered the cross-cultural neuropsycholog-
ical test battery [47], including the CASI C-2.0 [45,
46], Common Objects Memory Test (COMT) [47,
48], body part naming, the Consortium to Establish
a Registry for Alzheimer’s Disease (CERAD) verbal
category fluency, auditory comprehension, read and set
time, CERAD drawing [49], digit span (forward and
backward), picture completion, and Trail-Making Test
A. Given that previous studies have suggested a greater
memory deficit in �4-carriers [4, 5] and more impaired
executive functions in �4 non-carriers [4, 6], we partic-
ularly focused on the COMT test for episodic memory
and the CERAD verbal category fluency for animal
names, which is considered a measure of language and
executive function.

COMT was developed as a culture fair measure of
recent memory specifically for the cross-cultural neu-
ropsychological test battery [47, 48]. This test was
administered using standardized procedures as previ-
ously described [47, 48]. Briefly, the subject is shown a
set of ten 3×5” color photographs of common objects
(e.g., button, chair, clock) across three learning trials
and the subjects were required to immediately recall
as many as possible during each trail. After the third
trial, the examinee is engaged with a brief distracter
task (e.g., CERAD figure drawing) for 3 to 5 min and
then asked again to recall the items. The 5-min delayed
recall is immediately followed by a recognition test in
which ten original objects are interspersed with ten
distracters. The subject is asked to indicate with a
simple “Yes” or “No” whether an item was seen in
the original three learning tests. The distracter objects
are similar to the original objects in terms of visual
complexity and without distinctive details. Long-term

retention of the original objects was assessed after a 30-
min delay using tests of recall and recognition, with a
different set of ten distracters. Responses during three
learning with immediate free recall trials and those dur-
ing the subsequent two delayed recall and recognition
trials were used to assess the performance of recent
memory.

The verbal fluency test for animal naming was also
used to measure executive function. The examinees
were asked to name “all the animals you can think
of in one minute.” The examinees received credit for
naming general categories as well as specific examples.
Repeated responses were counted only once. The total
words generated are the most commonly used score
in verbal fluency tests. However, this approach did not
provide information about the mechanisms underlying
a poor test performance. Several studies suggest the
performance of semantic category fluency as a function
of time, which might provide additional insights into
cognitive processes [50–54]. Thus, we investigated the
level of performance in every 15-s phase during a 60-
s verbal fluency task to see if performance could be
different in APOE �4 carriers and non-carriers. Finally,
the CDR sum of box (CDR-SB) was used for global
evaluation of dementia [40].

Image acquisition

All MRI scans were performed on a 3.0 Tesla
MR system (Siemens Magnetom Trio A Tim sys-
tem, Germany) using a standard head coil. During
the entire scanning procedure, cushions and head-
phones were used to reduce subject motion and
scanner noise. A T1-weighted three-dimensional
volumetric magnetization-prepared rapidly acquired
gradient-echo (3D-MPRAGE) sequence was used
to acquire high-resolution anatomical images. The
parameters were as follows: repetition time (TR) =
2530 ms; echo time (TE) = 3.44 ms; time inversion
(TI) = 1100 ms; slice number = 192; slice thick-
ness = 1.0 mm; gap = 0 mm; matrix = 256 × 256; and
field of view (FOV) = 256×256 mm2. The scan
time of this sequence was approximately 6 min. The
R-fMRI data were collected using an echo-planar
imaging (EPI) sequence: axial slices, TR = 2000 ms;
TE = 30 ms; flip angle = 90◦; slice number = 30; slice
thickness = 4.0 mm; gap = 0.8 mm; matrix = 64 × 64;
and FOV = 220 × 220 mm2. During the functional
image acquisition, the participants were instructed to
keep their eyes closed, to relax their minds and to
remain motionless as much as possible, but to not fall
asleep. The R-fMRI scan lasted for 420 s in total.
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Structural imaging analysis

Determination of the region of interest (ROI) and
hippocampal volume

The borders of the bilateral hippocampi were
manually traced sequentially on each slice of indi-
vidual T1-weighted 3D MR images from posterior
to anterior using previously defined boundaries
[55], including the hippocampus proper, dentate
gyrus, subicular complex, alveus, and fimbria.
The boundaries were drawn using MRIcron software
(http://www.mccauslandcenter.sc.edu/mricro/mricron/)
by one trained rater (XW) who was blind to the clin-
ical information and APOE genotype. All individual
anatomical tracings were carefully reviewed by
another senior rater (HW) who was also blind to
all clinical information. Corrections were made
if necessary. The number of voxels was then
quantified within the mask and multiplied by the
voxel volume (1 mm3 here) using in-house Matlab
codes. Importantly, the hippocampal volume was
measured in the individual native space. For the
hippocampus-related functional analyses, individual
hippocampal ROIs were normalized into the Montreal
Neurological Institute (MNI) space in terms of
corresponding transformation matrices derived from
the normalization of individual T1 images to the
ICBM152 T1 template provided in the SPM8 toolbox
(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/).

To examine the reliability of the manual hip-
pocampal masks, we randomly selected 10 of the
42 participants and manually traced the borders of
the bilateral hippocampi a second time. The intra-
class correlation coefficient (ICC) and dice coefficient
(DC) were used to test the intra-rater reliability of
the hippocampal volume and spatial overlap of the
hippocampal topography, respectively. The ICC was
0.892 for the left and 0.896 for the right hippocam-
pal ROIs. The DC was 0.858 ± 0.025 for the left and
0.855 ± 0.029 for the right hippocampal ROIs. These
quantitative analyses indicated that the manual hip-
pocampal masks were reliable and were thus adequate
for the current study. The hippocampal probability map
over all participants is presented in Fig. 1.

Functional image analysis

Image pre-processing
Pre-processing of the R-fMRI data was per-

formed using the SPM8 package (http://www.fil.ion.
ucl.ac.uk/spm/software/spm8/). After removal of the
first five volumes to allow for T1 equilibration effects,

Fig. 1. Probability map of the hippocampal mask over all partici-
pants. Individual hippocampal ROIs that were drawn manually were
first transformed from the native space into the MNI space by apply-
ing the corresponding transformation matrices derived from the
spatial normalization of individual T1 images to the ICBM152 T1
template. The transformed hippocampal ROIs were then summed
over all of the participants to demonstrate the consistency of the
hippocampal location.

the functional images were corrected for intra-volume
time offsets between slices and inter-volume geomet-
rical displacements due to head movement. None of
the participants were excluded on the basis of the cri-
terion of displacement >3 mm or angular rotation >3
degree in any direction. All corrected functional data
were then normalized to the MNI space (12-parameter
affine transformation and non-linear deformations) and
resampled to a 3-mm isotropic resolution. The result-
ing images were further spatially smoothed (Gaussian
kernel of 6-mm full width at half maximum) and tem-
porally band-pass filtered (0.01–0.1 Hz). The linear
trends were also removed. Finally, several nuisance
signals (six head-motion profiles, mean white matter
and cerebrospinal fluid time series as well as their first
derivatives) were regressed out from each voxel’s time
course.

Intra-regional functional measures within the
hippocampus

To measure the local functional characteristics of
the hippocampus, we adopted the following two mea-
sures: ALFF [35] and COSLOF [22]. (i) ALFF: For
each voxel within a given hippocampal ROI, the time
series was first converted to the frequency domain
using a Fast Fourier Transform. The square root of
the power spectrum was then computed and summed
across a pre-defined frequency interval (0.01–0.1 Hz
in the current study). This summed square root was
termed ALFF at the given voxel [35]. The ALFF for
the given hippocampal ROI was simply calculated as

http://www.mccauslandcenter.sc.edu/mricro/mricron/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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the mean ALFF value across all voxels. The ALFF
measured the strength or intensity of low-frequency
oscillations embedded in spontaneous neural activity.
(ii) COSLOF: For any pair of voxels within a given
hippocampal ROI, we first computed the cross correla-
tion coefficient (zero lag) between the voxels [22]. This
resulted in a correlation matrix with a dimensionality of
N×N (N = the number of voxels in the given hippocam-
pal ROI). The COSLOF index was then calculated as
the mean of all elements in the upper triangular por-
tion of the correlation matrix. The COSLOF reflected
the overall functional integration within a given hip-
pocampal ROI.

Inter-regional functional connectivity with the
hippocampus

In addition to the local functional characteristics, we
further explored the RSFC of the hippocampus with
other distant brain regions [24, 27]. For a given hip-
pocampal ROI, a seed reference was first obtained by
averaging all of the voxels’ time series within the ROI.
The seed reference timecoursewas thencorrelated with
the time series extracted over the entire brain in a voxel-
wise manner. Finally, a Fisher’s r-to-z transformation
was applied to the resulting whole-brain correlation
map to improve the normality of these correlation coef-
ficients. Thus, for each participant, we obtained two
RSFC maps for the left and right hippocampi.

Statistical analysis

To determine the presence of statistically significant
differences between the APOE �4-carriers and non-
carriers in cognitive performance, structural volume,
and functional ALFF and COSLOF of the hippocam-
pus, multiple general linear models were performed
with age, gender, education, and disease severity
measured using the CDR-SB as covariates. The sig-
nificance level was established at p < 0.05. For the
hippocampal RSFC analysis, we first performed one-
sample t-tests in a voxel-wise manner to examine
within-group RSFC patterns. The statistical thresh-
old was set at a corrected p < 0.05 by combining a
height threshold of p < 0.0001 and an extent thresh-
old of p < 0.05 [56]. Voxel-by-voxel general linear
models were then performed to test between-group dif-
ferences with age, gender, education, and CDR-SB as
covariates. The statistical threshold was established at
a corrected p < 0.05 by combining the height thresh-
old of p < 0.01 and extent threshold of p < 0.05 [56].
To further elucidate the relationship between brain

characteristics and cognitive performance, multiple
linear regressions were performed on all of the subjects
with regression of the effects of age, gender, educa-
tion, and CDR-SB. Notably, the group status was also
entered into the regression model as a covariate to avoid
spurious correlations driven by the APOE genotyping
differences.

RESULTS

Demographic data and cognitive performance

The demographics and cognitive performances of
all subjects are illustrated in Table 1. There were
no significant (p > 0.05) differences in age, gender,
years of education, duration of illness, and severity
of dementia (as measured using CDR-SB) between
APOE �4-carriers and non-carriers. After control-
ling for gender, age, education, and CDR-SB, the
APOE �4-carriers demonstrated poorer performance
on the 5-min [t(33) = −3.622, p = 0.001] and 30-min
[t(33) = −2.828, p = 0.012] recognition test and a trend
toward poorer performance on the verbal fluency test
during the first 15 s [t(33) = 2.026, p = 0.051] compared
to the non-carrier group (Table 1). In contrast, carriers
performed better [t(33) = 3.319, p = 0.002] on the ver-
bal fluency during 46–60 s (which is associated with
executive function) compared to non-carriers (Table 1).
There were no between-group differences on the other
cognitive measures.

Hippocampal volume

Compared with non-carriers, APOE �4-carriers
exhibited significantly smaller volumes in the left
hippocampus [carriers versus non-carriers: 2085 ±
351 mm3 versus 2384 ± 402 mm3; t(36) = 2.188,
p = 0.035]. There was no significant differ-
ence in the right hippocampus between the two
groups [2035 ± 373 mm3 versus 2293 ± 350 mm3;
t(36) = 1.927, p = 0.062]. When corrected for addi-
tional individual brain size (calculated by total voxel
number within individual brain masks multiplied by
the voxel volume), the results demonstrated little
change (p = 0.048 for the left hippocampus and
p = 0.061 for the right hippocampus).

Hippocampal ALFF and COSLOF

Compared with non-carriers, APOE �4-carriers
exhibited significantly lower ALFF for the
left hippocampus [t(36) = 2.414, p = 0.021] and
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non-significant differences for the right hippocampus
[t(36) = 1.409, p = 0.168]. After further regressing out
the hippocampal volume, we observed similar results
(p = 0.034 for the left hippocampus and p = 0.203 for
the right hippocampus). There were no significant
between-group differences in COSLOF within the
hippocampus independent of correction for the
additional hippocampal volume (all p > 0.30). These
results of functional analyses were little changed after
correcting for the effects of total brain volume.

Hippocampal functional connectivity

Within the APOE �4 non-carriers group, the left hip-
pocampus showed extensive RSFCs with the frontal,
parietal, occipital, and temporal regions (Fig. 2A). In
contrast, within the APOE �4-carriers group, the left
hippocampus showed a much more restricted RSFC
pattern that was primarily located in the temporal lobe
and limbic system (Fig. 2A). Notably, the within-
group RSFC pattern of the right hippocampus was
very similar to that of the left hippocampus (Fig. 2A,
B). Subsequent between-group comparisons revealed

decreased RSFCs in the APOE �4-carriers com-
pared with the non-carriers. Specifically, the decreased
RSFCs in the left hippocampus were mainly involved
in several default-mode regions including the right
medial prefrontal cortex (MPFC), middle frontal gyrus
(MFG), left supramarginal gyrus, and left inferior
temporal gyrus (ITG) (Table 2 and Fig. 2A). How-
ever, for the right hippocampus, a spatially more
extensive and inter-hemispheric symmetrical pattern of
decreased RSFCs was identified that was also mainly
located in the default-mode network, such as the bilat-
eral MPFC/MFG, posterior cingulate gyrus (PCC),
ITG, and middle temporal gyrus (MTG) (Table 3
and Fig. 2B). In addition, the APOE �4-carriers also
showed decreased RSFCs in the right hippocampus
with the bilateral middle occipital gyrus and putamen.
However, no regions showed increased RSFC with the
bilateral hippocampi in the APOE �4-carriers.

Correlation analysis

No significant correlations were found between
the hippocampus-related neuroimaging measures

Fig. 2. Within-group RSFC patterns and between-group RSFC differences in the bilateral hippocampi. A) Left hippocampus. B) Right
hippocampus. The color bars represent the T scores. The results were mapped onto the brain surface using the BrainNet viewer
(http://www.nitrc.org/projects/bnv) [101].

http://www.nitrc.org/projects/bnv
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Table 2
Regions showing decreased RSFC with the left hippocampus in APOE �4-carriers compared to non-carriers

Brain regions BA Vol (mm3) MNI coordinate (mm) Maximum T

X Y Z

Right MPFC 9/44 1998 15 39 48 −4.03
Left SMG/IPL 2/40 1107 −60 −42 42 −3.60
Right MFG 8/9 972 36 33 48 −3.44
Right LING 17/18 810 3 −72 −3 −3.32
Left LING/PLC 18/19 1053 −24 −60 −90 −3.31
Right MPFC 10 1134 15 54 18 −3.29
Left IPL 40 810 −45 −42 51 −3.10
Right PoCG 2/5/7 1026 18 −51 72 −3.09
Left ITG 20 999 −48 0 −36 −2.99

BA, Brodmann’s area; Vol, cluster volume; X, Y, Z, coordinates of peak locations; Maximum T, t statistical
values of peak locations. MPFC, medial prefrontal gyrus; ITG, inferior temporal gyrus; LING, lingual
gyrus; PLC, posterior lobe of cerebellum; SMG, supramarginal gyrus; IPL, inferior parietal lobule; MFG,
middle frontal gyrus; PoCG, postcentral gyrus.

Table 3
Regions showing decreased RSFC with the right hippocampus in APOE �4-carriers compared to non-carriers

Brain regions BA Vol (mm3) MNI coordinate (mm) Maximum T

X Y Z

Bilateral MPFC/MFG/PreCG/PoCG 3/4/6/8/9/10/32/44/46 84132 18 45 24 −5.20
Left MTG/ITG 21/21/22 4590 −60 −21 −9 −4.52
Right MTG/MOG 19/37 3186 51 −69 0 −4.45
Left PUT 25/34/48 1674 −15 6 −6 −4.36
Right MTG/ITG 21/22 2592 60 −3 −15 −4.12
Right LN/PUT 25/48 1026 12 3 −9 −4.11
Left SMG/PreCG/PoCG 3/43/48 1215 −60 −18 42 −3.84
Left MOG 19/37 1161 −54 −72 0 −3.75
Left IFG 44 1026 −51 9 27 −3.63
Left PCC 23/30 2376 −3 −57 21 −3.49
Right MOG 18/19 918 39 −84 12 −3.14

BA, Brodmann’s area; Vol, cluster volume; X, Y, Z, coordinates of peak locations; Maximum T, t statistical values of peak locations. MPFC,
medial prefrontal gyrus; MFG, middle frontal gyrus; PreCG, precentral gyrus; PoCG, postcentral gyrus; MTG, middle temporal gyrus; ITG,
inferior temporal gyrus; MOG, middle occipital gyrus; PUT, putamen; LN, lentiform nucleus; SMG, supramarginal gyrus; IFG, inferior frontal
gyrus; PCC, posterior cingulate gyrus.

(structural volume and functional ALFF, COSLOF,
and RSFC) and neuropsychological data (all ps > 0.05).

Confounding effects of head motion

Several recent R-fMRI studies have suggested that
head motion during scanning might affect RSFC
analysis results [57–59]. For the current dataset,
we compared the maximum, root mean square
and frame-wise displacement of head motion and
found no significant differences between groups (all
p > 0.107). After treating these confounding factors as
extra covariates for functional neuroimaging analyses
(ALFF, COSLOF, and RSFC), these results remain
little changed. Lastly, we employed another scrub-
bing approach to censor “bad” volumes based on a
criterion of framewise displacement > 0.2 mm [57]
and found that the results of RSFC analyses largely

preserved (Fig. 3). These validation analyses indi-
cate that our main findings were not affected by head
motion.

DISCUSSION

The present study investigated the effects of the
APOE genotype on cognitive performance, hippocam-
pal volume, and functional architecture in the very mild
AD patients. Consistent with our hypothesis, APOE �4
carriers in patient with AD showed impaired recogni-
tion performance and smaller left hippocampal volume
as compared to non-carriers. Further, we demonstrated
that APOE genotype modulates hippocampal func-
tion, including ALFF in the left hippocampus and
inter-regional functional connectivity primarily in the
default-mode regions.
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Fig. 3. The effects of head motion on between-group RSFC differences in the bilateral hippocampi. A “scrubbing” procedure in the imaging
preprocessing was first used to censor “bad” volumes based on a criterion of framewise displacement [57], and between-group RSFC differences
in the bilateral hippocampi were re-analyzed.

In the present study, we found that compared with
non-carriers, APOE �4 carriers had greater memory
deficits in AD patients, which was largely consis-
tent with previous studies [4–11]. Disruptions in the
episodic memory system have been previously demon-
strated to be the earliest signs and symptoms of AD
[60]. Episodic memory consists of two major sub-
systems: recall and recognition [61]. Compared with
free recall, recognition tasks may rely less on strate-
gic memory and produce lower search demands [62].
Specifically, Walhovd et al. [62] showed that APOE
was only significantly related to recognition in patients
with AD, which provided important support for our
findings. Previous studies suggest that delayed recall
is associated with hippocampal atrophy [63, 64]. How-
ever, we found that the differences in episodic memory
were significant only for recognition, not for delayed
recall. Previous studies show that recognition memory
is also related to the region of hippocampus. Recog-
nition memory is widely viewed as being composed
of at least two processes: recollection and familiar-
ity by the dual-process theories, and they can be
mapped onto the hippocampus and perirhinal cor-
tex, respectively [65–67]. An alternative theory is that
the hippocampus supports both processes of recog-
nition memory [68–70]. Given that the seed-based
connectivity analysis used here was performed only
on the hippocampus, further works will be necessary to
examine the connectivity patterns of hippocampus and
perirhinal cortex. These would be helpful for clarify-
ing the brain connectivity basis underlying the different
effects of recognition and recall.

In this study, we also observed a trend toward greater
impairment of executive function, namely verbal flu-
ency (the total output of animal names) in APOE �4
non-carriers. This finding was consistent with sev-
eral previous studies demonstrating that non-carriers
performed more poorly than carriers on non-memory
performance [4, 6, 10, 11]. Notably, in this study,
APOE �4-carriers performed poorly in the early item
generation time periods (0–15 s) but not in the late
generation periods (46–60 s). Successful performance
on semantic category fluency is thought to depend on
executive functions and the ability to initiate system-
atic search and retrieval data from the lexicon or the
semantic memory system [50, 52, 53]. Different sub-
ject groups produced different correct answers in the
initial phases (e.g., children, young and old adults;
patients with schizophrenia, aphasia, depression, and
dementia) [71], which was considered to be related
to automatic retrieval from the available word store,
and the number decreased in the subsequent time inter-
vals due to the fact that the word store was exhausted
and search became more effortful [50, 52]. The perfor-
mance of the subsequent time intervals in the verbal
fluency was actually more dependent on executive
functioning [52]. The results of verbal fluency as a
function time in this study were consistent with pre-
vious studies [50, 52–54]. Memory impairment might
underlie the degraded semantic store [50, 72] and might
explain the poorer semantic memory performance in
initiating the fluency task in APOE �4-carriers. The
mechanism of more pronounced performance on the
fluency task in the late period in APOE �4-carriers may
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correlate with the notion that the non-carriers showed
greater difficulties on tasks of the executive function
[51].

The theory of cognitive reserve [73] suggests that
individuals with higher levels of ability have greater
neuronal changes or more efficient neuronal network.
Education level has been used as a substitute for cogni-
tive reserve [74–79], however, there was no significant
difference in education between the APOE �4-carriers
and non-carriers in the present study. Furthermore,
we compared the cognitive performance between the
two groups after further adjusting for gender, age,
and education, and found that the results were little
changed. Notably, several previous studies supported
that the premorbid IQ may be a better proxy of cogni-
tive reserve [73, 76] but was not examined in the pilot
work. Further works will be important to include the
premorbid IQ measurement.

Our finding of APOE �4-related hippocampal atro-
phy corroborates the results of previous structural
imaging studies demonstrating smaller hippocam-
pal volume in APOE �4 carriers with AD [15–18].
However, several other studies did not detect any
pronounced �4-related hippocampal volumetric dif-
ference in AD [19, 20]; thus the modulation of the
APOE �4 allele on anatomical phenotypic expression
is inconclusive in AD. Several potential confound-
ing factors, specifically demographic characteristics
and disease-relevant variables such as the onset age
of symptom, disease duration, and severity, may par-
tially contribute to the discrepancy of earlier studies.
Another speculative interpretation of this discrepancy
might be attributed to different sampling and analysis
approaches. In studies performed by Jack et al. [19] and
Drzezga et al. [20] patients with the APOE �2 allele
were included. Given the potential protective effect of
the APOE �2 allele on AD risk [43], participants with
the APOE �2 allele may lessen the ability to detect
hippocampal volumetric differences between APOE
�4-carriers and non-carriers. In this study, we observed
a decreased hippocampal volume in APOE �4-carriers
compared to non-carriers after removal of the effects
of several confounding factors including age, gender,
education, and severity of dementia. Moreover, sub-
jects with only the APOE genotype of �3/�4, �4/�4,
and �3/�3 were included. Thus, our findings indicated
that the APOE �4 allele decreased the hippocampal
volume in AD.

With respect to hippocampal functioning, we
observed a decreased local spontaneous activity
(i.e., ALFF) in the left hippocampus in APOE �4-
carriers. Several previous R-fMRI studies have shown

that the hippocampus displayed abnormal regional
spontaneous activities in patients with AD [21, 23].
Moreover, under cognitive engagement of a memory
encoding task, Adamson and colleagues [80] reported
that APOE �4-carriers who were healthy elderly sub-
jects exhibited reduced activation in the hippocampus
compared to non-carriers. In this study, we did not
observe significant difference in ALFF in the right hip-
pocampus between two groups. These results suggest
that the local spontaneous activity in the left hippocam-
pus might be more vulnerable to APOE �4 than that in
the right hippocampus. This speculation is compatible
with previous morphological studies in AD [81–83].
Together, we provided further evidence for the effect
of the APOE �4 allele on the level of spontaneous or
intrinsic brain activity in the hippocampus. Although a
previous R-fMRI study showed AD-related reduction
in the COSLOF index in the hippocampus [22], we did
not find significant differences in this index between
APOE �4-carriers and non-carriers. This result indi-
cates that the intra-regional functional synchronization
within the hippocampus was not significantly influ-
enced by the APOE �4 allele.

In addition to local functional properties, we also
observed APOE related alterations in hippocampal
RSFC. Compared to non-carriers, APOE �4-carriers
showed decreased hippocampal RSFC predominately
in several components of the default-mode network
(DMN) (PCC, MPFC, MFG, MTG, and ITG). The
DMN consists of a specific set of regions that rou-
tinely display high levels of activity during rest
but decreased activity during the performance of
attention-demanding cognitive tasks [84, 85]. Con-
verging evidence suggests that the DMN regions are
important functional hubs of the brain and show
preferential vulnerability to AD pathology [86–88].
Several previous R-fMRI studies have also consis-
tently reported intrinsic RSFC changes in the DMN in
AD patients [24, 26]. Furthermore, accumulating evi-
dence from healthy adults has demonstrated the effect
of the APOE �4 allele on DMN integrity [36–39].
A previous study proposed the model of disruption
of DMN connectivity without amyloid-� deposition
[89] that abnormally increased network connectivity
in young APOE �4 carriers [37] might be followed by
subsequent decreases of network interconnectivity in
elderly APOE �4 carriers [38]. Several studies reported
initially increased functional connectivity as a conse-
quence of A�-induced hyperexcitability of neurons,
representing a transient phase of impending break-
down of neuronal networks and turning into activation
deficit with further increase in pathology [90–92].
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One interesting discrepancy was observed between
the increased connectivity in regions associated with
successful memory performance (the precuneus and
the gyrus rectus in the medial orbitofrontal cortex)
[39] versus decreased connectivity in these regions
(amygdala, hippocampus, PCC, and precuneus) [36] in
elderly APOE �4 carriers. The results were supported
by another study reporting that increased A� deposi-
tion was associated with decreased DMN connectivity
in the same regions implicated in episodic memory
processing (posteromedial cortex, ventral medial pre-
frontal cortex, and angular gyrus) in elderly adults [91].
Here, our results provided the first evidence for the
modulation of the APOE genotype on DMN connec-
tivity in AD. The primary biological effect of APOE
�4 appears to increase A� accumulation [93, 94],
which potentially affect soluble A� metabolism [95].
This increase is spatially specific predominantly in the
medial prefrontal and parietal cortices [20, 96], over-
lapping largely with the main components of the DMN.
The elevated amyloid burden was found to be related
to a disrupted connectivity in these corresponding
regions [97, 98], potentially via a possible mechanism
of synaptic loss [99]. Thus, the disrupted DMN con-
nectivity in APOE �4 carriers might be an outcome of
increased amyloid-� burden. Given the implications
of the DMN in episodic memory processing [26], we
proposed that the disrupted hippocampus-DMN RSFC
might underlie the deficits of episodic memory perfor-
mance in APOE �4 carriers compared to non-carriers as
observed in the current study. In addition, we observed
a visual asymmetrical effect of the APOE �4 allele on
hippocampal RSFC in which the right hippocampus
was more severely disrupted. Thus, investigation of the
modulation of APOE �4 allele on brain structure and
functioning from the perspective of asymmetry will be
an interesting topic in future studies.

Several issues need to be further addressed. First,
the sample size between carriers and non-carriers was
not balanced. The imbalance of sample size has been
observed in numerous genetic neuroimaging studies
[19, 38, 39, 100]. Given the relative small simple size
in this study, we did not explore the effects using boot-
strapping approaches. This small sample also made us
not examine the dose effect of �4 genotype. We are
continuing to collect more AD patients with differ-
ent APOE genes, and a larger sample is expectable to
address these issues in future. Second, we exclusively
studied structural and functional features of the bilat-
eral hippocampi by manually tracing their boundaries.
However, such an approach cannot be used for hip-
pocampal subregions due to that the structural images

collected in this study did not have enough spatial
resolution. Further studies are warranted to assess
the APOE �4-related effects on structural and func-
tional characteristics of hippocampal subregions in AD
using high-resolution MRI techniques. Lastly, major
concerns have been raised about the effects of head
motion on R-fMRI analysis [57–59]. In this study, we
used both regression and scrubbing methods to vali-
date our results, and the main findings were preserved.
Nonetheless, the effects of residual motion might exist,
which needs to be further validated by advanced head
motion approaches developed in the future.

Taken together, these pilot data suggest that com-
pared with non-carriers, APOE �4-carriers exhibited
episodic memory impairment, left hippocampal atro-
phy, and functional connectivity disruption in patients
with AD. Thus, these results provided preliminary
evidence for the possible effects of APOE on the neu-
rocognitive phenotype and the functional integrity of
the hippocampus in AD. These findings need to be
confirmed in future studies using large sample data.
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